TO DECLASSIFICATION/DOWNGRADING SCHEDU

3. DISTRIBUTION/AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE:

DISTRIBUTION UNLIMITED

4 PERFORMING ORGANIZATION REPORT NUMBERIST

AFOSR/ONR ANNUAL TECHNICAL REPORT 89-2

& MONITORING ORGANIZATION REPORT NUMBER(S)

89-1733 APCISK - TR -

SA NAME OF PERFORMING ORGANIZATION

SE OFFICE SYMBOL (If applicable)

TA NAME OF MONITORING ORGANIZATION

AIR FORCE OF SCIENTIFIC RESEARCH

6c. ADDRESS (Ciry. Stew and ZIP Code) 1236 William James Hall

HARVARD UNIVERSITY

33 Kirkland Street Cambridge, MA 02138-2044 78. ADDRESS ICILY, Siets and ZIP Code:

Building 410 Bolling Air Force Base, D.C. 20332-6444

& NAME OF FUNDING/SPONSORING ORGANIZATION

OFFICE SYMBOL (If applicable)

S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

2313

AFOSR

NL

88-0012

ELEMENT NO.

61102F

BL ADDRESS (City, State and ZIP Code)

Building 410

Bolling Air Force Base, D.C. 20332-6448

10. SOURCE OF FUNDING NOS. PROGRAM

WORK UNIT TASK NO. NO. A4

11. TITLE illnelude Security Classification!

The Neuropsychology of Imagery Processing

12. PERSONAL AUTHORIS)

Stephen M. Kosslyn

Annual Tech.Report

13% TIME COVERED FROM 12/88

ra 12/89

14. DATE OF REPORT IYE, Ma., Day! 1989 Nov. 28

IS PAGE COUNT

15 SUPPLEMENTARY NOTATION

17.	COSATI CODES		IS SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD	GROUP	SUB. GR.	Neuropsychology, vision, task battery,
05	09		spatial orientation
			1

Progress has been made in six areas. First, a task battery to assess high-level visual abilities has been fully implemented. This battery is administered and scored on the Macintosh computer. Second, the task battery has been used to examine one patient in detail, and has diagnosed a subtle visual deficit that is consistent with both the lesion location and regions of hypometabolism (as measured by PET scanning). Third, additional brain-damaged patients have been tested in order to discover whether the visual angle subtended by jmaged objects is systematically related to the amount of damage to the occipital lobe. Data from these three patients suggests such Fourth, the computer simulation of high-level vision is fully functional. and predictions have been generated about previously unnoticed syndromes. example, the model predicts that some patients will be able to recognize faces but not Fifth, three (commund) common objects. Some of these predictions currently are being tested.

20. DISTRIBUTION/AVAILABILITY OF ASSTRACT

21. ABETRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED 😡 SAME AS RPT. 😡 DTIC USERS 🚨

UNCLASSIFIED 226 TELEPHONE NUMBER

22c. OFFICE SYMBOL

224 NAME OF RESPONSIBLE INDIVIDUAL Alfred R. Freely

ilneiude Area Code (202)767 - 5021

NL

1

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSITIED

Cony

subjects have been given imagery tasks while being PET scanned. The results are consistent with the predictions of the theory. In particular, the medial occipital and frontal activation is consistent with the claim that images are patterns of activation in topographically mapped areas and that they are built up sequentially. Finally, response time studies using divided visual field techniques have provided evidence for two ways of representing spatial relations, as categories (e.g., left/right; above/below) or precise metric amounts; the left hemisphere is generally more effective at computing categorical spatial relations, and the right hemisphere is generally more effective at computing metric spatial relations. Additional experiments have provided evidence that both types of spatial relations can be used to arrange parts into a visual mental image.

APOSR-TR- 89-1733

Annual Technical Report
"The Neuropsychology of Imagery Processing" (88-0012)
S. M. Kosslyn, PI
December 1989

Research Objectives

General objectives

The research has two general objectives:

- 1. To characterize further the nature of the processing subsystems used in imagery.
- 2. To discover the realization of specific processing subsystems in the two hemispheres of the brain.

Specific objectives

To accomplish these goals, there are four specific objectives:

790**2** 1394**2M** 2

1. Develop a comprehensive task battery

Numerous tasks are required to garner evidence for distinct subsystems. The theory developed in our laboratory has guided us to develop a set of tasks which, when the results are taken together, should allow us to determine whether brain damage has selectively affected individual subsystems.

2. Test brain-damaged subjects

Brain damage can selectively affect specific aspects of processing. Thus, we plan to test a range of patients who have selective deficits. We have just begun this aspect of the research, which waited on our implementing the task battery.

3. Computer simulation models

The effects of brain damage on behavior are complex. In order to generate predictions precisely, we needed to implement a computer simulation model. The model is running, and has produced a number of specific predictions.

4. Divided visual field studies with normal subjects

Both of the general objectives are served by divided visual field studies of normal subjects. To the extent that there is a dissociation between field and task, one has evidence for distinct processing subsystems. And the nature of the dissociation informs us as to how processing is implemented in the hemispheres.

Status of the Research

Progress in achieving these objectives has been made in six ways.

1. Task battery

A task battery to assess high-level visual abilities has been fully implemented.

Theoretical underpinings. Neurophysiological and neuroanatomical studies of nonhuman primates have documented that there are two major cortical pathways used in identifying objects visually. One is concerned with processing what an object (or part) is, whereas the other is concerned with processing where it is. The pathway concerned with recognizing shape runs from the occipital lobe down to the inferior temporal lobe, whereas the pathway concerned with location runs from the occipital lobe up to the parietal lobe.

These two visual pathways must converge at an associative memory, where the two kinds of information are integrated. Associative memory plays several critical roles in allowing one to exercise visual-spatial abilities, including helping to guide attention to critical details of a viewed object. Although the memories themselves appear to be stored in various places throughout the brain, structures in the frontal lobe have been shown to be critically involved in actively seeking out information stored in memory.

Finally, one can manipulate stored visual information in various ways in the course of reasoning visually. This kind of activity requires one to activate stored visual information and then to transform it, observing the consequences of such mental manipulations. The frontal and parietal lobes play critical roles in such processes.

Structure of the battery. The battery is designed around a decision tree. Subjects are first tested on four tasks. If there is a deficit on the first task, one or more component processes used in the temporal lobe shape-identification system is awry; if there is a deficit on the second task, one or more component processes used in the parietal lobe location system is awry; if there is a deficit on the third task, one or more component processes used in accessing stored information to direct attention or to form images is awry; and if there is a deficit in the fourth task, one or more component process used to manipulate stored visual information and observe the consequences is awry. Once scores from these four "screening" tasks are examined, the relevant branches of the tree are descended, as briefly described below.

Processes that recognize shape. A deficit in recognizing shape could reflect a number of distinct underlying deficits. The battery allows one to determine whether the deficit is due to a problem in adjusting attention to the size of the shape, in scanning the shape, in extracting key features of the shape, in storing an initial shape, or in matching a perceived shape to a stored shape.

Processes that specify location. A deficit in specifying location also could be due to a number of dysfunctions. The battery allows one to determine whether the problem is in registering two objects at once, in specifying location relative to objects rather than the retina, in encoding metric information, or in encoding "categorical" information (e.g., left/right; above/below).

Processes that look up stored information. A deficit in directing one's attention to the appropriate locations or in forming mental images could be due to processes that look up information stored in memory or to processes that use this information. The battery allows one to assess both types of potential deficits.

Processes that manipulate stored information. A deficit in mentally manipulating visual information could reflect a deficit in being able to retain visual information in mental images, imagine a pattern being transformed, or interpret the consequences of a mental transformation. The battery allows one to assess these types of potential deficits.

Use of modern chronometric tes'iniques. A score on most tests reflects the efficacy of all of the component processes that must be used to perform the test. Thus, such scores are inherently ambiguous; they could reflect a set of rather general factors, such as speed of processing or of

responding, as well as the specific factors they are designed to index. This problem with most currently available tests is widely acknowledged, but little has been done previously to address it. The present battery is based on a different approach, derived from the work on "additive factors" in cognitive psychology. This work hinges on the observation that specific variables can be identified with specific stages of processing; thus, by varying the value of the variable, one can selectively tax a specific stage. The present battery is based on this idea; we include at least three levels of a key variable within each test, and the score is a measure of increased difficulty over these levels. This technique allows us to assess the efficacy of specific component visual-spatial processes.

Administering and scoring the battery. The battery is implemented on a standard Macintosh Plus or Macintosh SE computer. The computer presents all instructions and stimuli, and it records responses, errors, and response times. At the end of each test the computer prints out two scores, one based on response times and one based on error rates. (A third score, combining the two, is easily computed and will be available in the final version.) The scores are then compared against normative scores, and a deficit is defined as a test score that falls outside the .05 confidence interval of the normal scores. The entire battery, should it be necessary to administer, requires about 3 hours for an otherwise healthy braindamaged subject. The four screening tasks require about 20 minutes to administer, and it is almost never necessary to administer the complete battery after the scores on the screening tasks are seen.

2. Using the battery to test brain-damaged patients

The task battery has been used to examine one patient in detail, and has diagnosed a subtle visual deficit that is consistent with both the lesion location and regions of hypometabolism (as assessed by PET scanning). The patient displayed only a mild deficit in naming pictures (he was incorrect on 13% of the trials). This patient is unusual insofar as he has Broca's aphasia with no sign of a cortical lesion on CT scan; however, there is evidence of damage to white matter (the head of the left caudate) and of hypometabolism in both the left frontal lobe and occipito-temporal area. Thus, it was of interest to discover that he has selective deficits for image rotation and generation (both of which are posited by our theory to recruit processes implemented in the frontal lobe), but not for image scanning (which putatively does not require those structures). We also have preliminary evidence that he has difficult extracting "nonaccidental features" during perception. We are now in the process of analyzing his results in detail and comparing them to those from age- and educationmatched control subjects. We have established a good mechanism for

recruiting additional patients at the Massachusets General Hospital, and have other patients scheduled to be tested.

3. Additional patient testing

We have tested three additional brain-damaged patients on a task designed to assess the contribution of the occipital lobe to visual imagery. These subjects have varying amounts of damage to the occipital lobe (as well as to other structures, unfortunately). The task required subjects to decide from memory whether a named object is higher than it is wide; the objects were selected so that this discrimination is relatively subtle, and imagery typically is reported to be used. Subjects are seated in front of a blank white screen, and are asked to "project" their images of the objects on the screen in front of them when performing the task. Immediately after each item, the subject is asked to point to where the leftmost side of the object would be and where the rightmost side of the object would be if a picture of the object had been projected on the screen as it appeared in the image. A compass is mounted under the subject's chin, and all pointing is done with a pointer mounted on the compass. Thus, we could read off both the angle subtended by the imaged object and whether the object was located directly in front of the subject. It is of interest that all three subjects with occipital lobe damage show visual angles at least half those of normal control subjects (when we correct for bias in pointing). In contrast, subjects with parietal lobe damage or subcortical (thalamic) damage that affects vision do not exhibit smaller angles. Furthermore, we discovered that one of these control subjects (who had damage to his left LGN) observed imaged objects drifting into his blind field; this result allows us to speak against the role of "tacit knowledge" of perception in producing the results, given that the subject never actually sees anything in his blind field. Thus, the evidence collected thus far is consistent with the claim that images are spatial representations the are supported by structures in the occipital lobe.

4. Computer simulation

The computer simulation model was described in last year's annual report. We have used the program to generate a series of predictions, which are being published in the next issue of <u>Cognition</u>. We are actively seeking patients who show deficits that are consistent or inconsistent with predictions. For example, the model predicts that some patients will be able to recognize faces but not common objects. It also predicts that some subjects who have difficulty recognizing faces will also have difficulty recognizing objects seen from unusual points of view.

5. PET scanning

This work was not anticipated in the original proposal. However, we were invited to collaborate with the PET group at MGH, and have begun to make exciting discoveries using this technique. So far, three subjects have been given imagery tasks while being PET scanned at the MGH (this work is in collaboration with Dr. Nat Alpert, who obtained the necessary approval of the human subjects committee at the MGH). The results are consistent with the predictions of the theory. In particular, the medial occipital and frontal activation is consistent with the claim that images are patterns of activation in topographically mapped areas and that they are built up sequentially. In addition, we have begun a collaboration with the Washington University PET scanning group, and plan a study to examine the precise correspondences in activated brain areas in imagery and perception. The study is designed to allow us to examine directly the effects of spatial properties of imaged patterns on the patterns of activation in the brain (particularly in areas in extrastriate cortex that are known to be topographically mapped in nonhuman primates).

6. Response-time experiments with normal subjects

Finally, response time studies using divided visual field techniques have provided evidence for two ways of representing spatial relations, as categories (e.g., left/right; above/below) or precise metric amounts; the left hemisphere is generally more effective at computing categorical spatial relations, and the right hemisphere is generally more effective at computing metric spatial relations. Additional experiments have provided evidence that both types of spatial relations can be used to arrange parts into a visual mental image.

In addition to these studies, we have continued to develop the theory by conducting experiments with normal subjects. Perhaps the most intriguing result (obtained in collaboration with C. Cave) focused on the time to identify line drawings of familiar objects. The drawings were presented completely intact, with the parts separated slightly but their spatial relations maintained, with the parts separated and presented in incorrect locations, with the object segmented arbitrarily but these segments being in the proper spatial relations, or with the object segmented arbitrarily and presented in incorrect locations. (Part boundaries were determined by having a separate group of subjects indicate segments, as was done by Biederman; we, as did he, found high agreement among these subjects.) The interesting prediction hinges on a distinction between Lowe's theory of object encoding and Biederman's theory. Lowe claims that "nonaccidental properties" (parallel lines, points of intersection, etc.) are extracted, and then the set is used to index a stored model; this indexing process operates with the constraint that the nonaccidental properties must be consistent with seeing a single object

from a single point of view (the so-called viewpoint consistency constraint). On this theory, the critical variable should be disruptions of the viewpoint consistency constraint, and hence scrambling the spatial relations should disrupt naming time. In contrast, there is no reason to think that it is important whether the object is broken along part boundaries or is borken up arbitrarily. On the other hand, Biederman's theory stresses the recovery of "geons" during encoding (geometric shape primitives), which should be disrupted when the parts are segmented arbitrarily. Thus, it is of real interest that naming times were significantly impaired when parts were scrambled, but there was no effect of how the object was broken up. This finding has been replicated, and another variant is currently being conducted.

Publications During Grant Period

- Kosslyn, S. M., Sokolov, M. A., and Chen, J. C. (1989). The lateralization of BRIAN: A computational theory and model of visual hemispheric specialization. In D. Klahr and K. Kotovsky (Eds.), Complex Information Processing Comes of Age. Hillsdale, NJ: Erlbaum.
- Kosslyn, S. M. (1989). Imagery. In D. Osherson, S. M. Kosslyn, and J. Hollerbach (Eds.), An Invitation to Cognitive Science. Cambridge, MA: MIT Press.
- Osherson, D., Kosslyn, S. M., and Hollerbach, J. (Eds.) (1989), An Invitation to Cognitive Science. Cambridge, MA: MIT Press.
- Cave, K. R., and Kosslyn, S. M. (1989). Varieties of size-scaling in attention. Journal of Experimental Psychology: General., 118, 148-164.
- Kosslyn, S. M. (1989). The psychology of visual displays. *Investigative Radiology*, 24, 417-418.
- Rueckl, J. G., Cave, K. R., and Kosslyn, S. M. (1989). Why are "what" and "where" processed by separate cortical visual systems? A computational investigation. *Journal of Cognitive Neuroscience*, 1, 171-186.
- Kosslyn, S. M. (1989). Understanding charts and graphs. Applied Cognitive Psychology. 3, 185-225.
- Van Kleeck, M. H., and Kosslyn, S. M. (1989). Gestalt laws of perceptual organization in an embedded figures task: Evidence for hemispheric specialization. *Neuropsychologia*, 27, 1179-1186.
- Holtzman, J. D., and Kosslyn, S. M. (in press). Components of mental imagery: Neuropsychological evidence. In A. Caramazza (Ed.), Advances in Cognitive Neuropsychology. Hillsdale, NJ: Erlbaum.
- Kosslyn, S. M. (in press). Computational theories of imagery. Dictionary of Cognitive Science. London: Basil Blackwell.

- Kosslyn, S. M., and Van Kleeck, M. (in press). Broken brains and normal minds: Why humpty-dumpty needs a skeleton. In E. Schwartz (Ed.), Computational Neuroscience. Cambridge, MA: MIT Press.
- Kosslyn, S. M., Cave, C. B, Arditis, A., and Gabrieli, J. D. E. (in press). Visual imagery in the blind side: a neuropsychological test of the tacit knowledge hypothesis. *Brain and Cognition*
- Kosslyn, S. M., Flynn, R. A., and Amsterdam, J. B. (in press). Components of high-level vision: A cognitive neuroscience analysis and accounts of neurological syndromes. *Cognition*
- Kosslyn, S. M., Van Kleeck, M. C., and Kirby, K. N. (in press). A neurologically plausible theory of individual differences in visual mental imagery. In J. T. E. Richardson, P. Hampson, and D. Marks (Eds.), Advances in Mental Imagery. London: Routeledge.
- Kosslyn, S. M., Segar, C., Pani, J., and Hillger, L. A. (in press). When is imagery used? A diary study. *Journal of Mental Imagery*.
- Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., and Gabrieli, J. D. E. (in press). Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations.

 Journal of Experimental Psychology: Human Perception and Peformance
- Van Kleeck, M. H., and Kosslyn, S. M. (in press). The use of computer models in the study of cerebral lateralization. In F. L. Kitterle (Ed.), Cerebral Laterality: Theory and Research. Hillsdale, NJ: Erlbaum
- Kosslyn, S. M., and Chabris, C. F. (in press). Naming pictures. Journal of Visual Languages and Computing,
- Kosslyn, S. M., Margolis, J. A., Barrett, A. M., Goldknopf, E. J., and Daly, P. (in press). Age differences in imagery abilities. *Child Development*,
- Kosslyn, S. M., and Park, S. (in press). Hemispheric differences in memory for lateral orientation. Brain and Cognition,

Participating Professionals

- Jay R. Rueckl, Ph.D. Assistant Professor, Department of Psychology, Harvard University (collaborator on neural network models)
- Olivier Koenig, Ph.D. Visiting Scholar (now returned to the University of Geneva)
- Arlette Swift, Ed.D. Post doctoral fellow (neuropsychology)

Ph.D. Degrees Awarded

C. B. Cave. The neuropsychology of navigation. Currently a post-doctoral fellow in Larry Squire's laboratory at UCSD.

M. Van Kleeck. Perceptual parsing in the cerebral hemispheres. Currently a post-doctoral fellow at M.I.T.

In addition, five graduate students work in the laboratory.

Coupling Activies

Presentations

Presentations were delivered at the following institutions. Unless noted otherwise, these were colloquia summarizing the material described in this Annual Report and were generally entitled "Components of High-Level Vision: A Cognitive Neuroscience Analysis"

Boston University

Princeton University

Massachusetts General Hospital (Behavioral Neurology rounds)

Longwood Medical Area (Harvard Medical School) Neurology grand rounds

Shattuck Hospital

Ohio State University

Brown University

University of Minnesota

University of Montreal

Massachusetts Neuropsychology Society

Washington University Medical School

Thinking Machines Corporation

Dartmouth University

University of Rochester

Cognitive Science Society Symposium on Cognitive Neuroscience of Attention

James S. McDonnell Summer Institute in Cognitive Neuroscience (Dartmouth University)

The Salk Institute

AFOSR Contractors' meeting in Alexandria, VA

Honors

Federation of Social, Behavioral and Cognitive Sciences
Massachusetts Neuropsychology Society
Consultant, Naval Research Laboratories (19 January 1989)
Pew Memorial Trust Northeastern Neurosciences Program, grant preparation committee

National Research Council committee on Cognitive Psychophysiology Symposium Co-organizer, 1989 meetings of Cognitive Science Society Co-organizer, 1990 Cognitive Science Society meetings (to be held in Boston)

Editorial board: <u>Journal of Cognitive Neuroscience</u> (co-founder);

<u>Behavioral Neuroscience</u>; <u>Psychological Review</u>; <u>Journal of Visual Languages and Computing</u>

External reviewer, programs in experimental psychology at Syracuse University.

Patents and Copyrights

Harvard University is in the process of obtaining a copyright for the test battery.

Additional Progress

The laboratory has also developed a general purpose neural network simulator, which appears to be more powerful than simulators that are commercially available. Two versions have been implemented, one for the Macintosh II and one for a UNIX VAX environment. In addition, a program called "quick stat" has been developed to compute statistics directly on the output from our tachistoscope simulator program for the Macintosh.

Dr Jonathan Baron 80 Glenn Avenue Berwyn PA 19312

Dr Jacob Beck Department of Psychology University of Oregon Eugene DR 97403

Dr Irving Biederman Dept of Psychology, Park Hall SUNY at Buffalo Amherst NY 14260

Or Elizabeth Bjork Department of Psychology University of California Los Angeles CA 90024

Dr Robert Bjork Department of Psychology University of California Los Angeles CA 90024

Dr Kathryn Bock Department of Psychology, Uris Hall Cornell University Ithaca NY 14853

Br L. E. Bourne, Jr Department of Psychology University of Colorado - Box 345 Boulder CO 80309

Dr Gordon Bower 750 Mayfield Avenue Stanford CA 94305

Or Lila Braine
Department of Psychology
Barnard College
606 W 120th Streat
New York WF: 18027

Dr Myron L Braunstein School of Social Science University of California Irvine CA 92717

Dr Albert S. Bregman
Department of Psychology
1205 Dr Penfield Avenue
Montreal Quebec
CANADA

Or Dorts Aaronson No. 29C, 110 Bleecker Street New York NY 10012

Or Jack A. Adams
Department of Psychology
University of Illinois
Champaign IL 61820

Dr James A. Anderson Department of Psychology Brown University Providence RI 02912

Dr John R Anderson
Department of Psychology
Carnegle-Mellon University
Pittsburgh PA 15213

Dr Nancy S. Anderson Department of Psychology University of Maryland College Park MD 20742

Or Norman H. Anderson Psychology C-009 University of California La Jolla CA 92093

Dr Fred Attneave Department of Psychology University of Oregon Eugene OR 97403

Dr Lloyd L. Avant Department of Psychology Iowa State University Ames IA 50011

Or Harry P. Bahrick 5 Westgate Dr Delawere OH- 43015

Dr Donald Banher Research Service VA Medical Center St Cloud MN 563D1

Dr R. K. Banks
Department of Psychology
University of Waterloo
Waterloo - Ontario
CANADA

Dr John Theios
Department of Psychology
University of Wisconsin
Madison WI 53706

Dr James T. Townsend Department of Psychology Purdue University West Lafayette IN 47907

Dr Tom Trabasso Department of Psychology University of California Santa Barbara CA 93106

Dr Anne M. Treisman Psychology Department University of British Columbia Vancouver BC Canada

Dr Barbara Tversky Department of Psychology Building 420 Stanford University Stanford Ca 94305

Dr Ovid Tzeng
Department of Psychology
University of California
Riverside CA 92521

Dr James Voss LRDC-University of Pittsburgh 3939 Ohara Street Pittsburgh PA 15260

Dr Brian A. Wandell Department of Psychology Stanford University Bldg. 420 Stanford CA 94305

Dr J. G. Snedfrass New York Un forstty 6 Washington: Place Rm 856 New York 1885 10003

Dr Robert Weber Department of Psychology Oklahoma State University Stillwater OK 74078

Dr Daniel Weintraub Human Performance Center Perry Building 330 Packard Road Ann Arbor MI 48104 Or Wayne Wickelgren
Department of Psychology
University of Oregon
Eugene OR 97403

Dr Delos D. Wickens Psychology Department Colorado State University Fort Collins CO 80525

Dr Thomas D. Wickens Department of Psychology University of California Los Angeles CA 90024

Dr George Wolford Department of Psychology Dartmouth College Hanover NH 03755

Or Keith Wollen
Department of Psychology
Washington State University
Pullman Wa 99164

Dr Franks Yates
Department of Psychology
University of Michigan
Ann Arbor MI 48104

- Dr Rose Zacks
 Department of Psychology
 Michigan State University
 East Lansing MI 48824
- Dr Eugene B. Zechmeister
 Department of Psychology
 6252 N. Sheridan Road
 Chicago IL 60626

Or Wayne Shebilske Comm on Vision National Academy of Science 2101 Constitution A Washington DC 20418

Dr Roger N. Shepard Psychology Department Building 420 Stanford University Stanford CA 94305

 Dr Richard M. Shiffrin Department of Psychology Indiana University Bloomington IN 47405

Dr Edward J. Shoben Psychology Department University of Illinois 603 East Daniel Street Champaign IL 61820

Dr Harvey Shulman Human Performance Center 404-B West 17th Ave: Columbus OH 43210

Dr Robert Siegler Department of Psychology Carnegie-Mellon University Pittsburgh PA 15260

Dr H. A. Simon
Department of Psychology
Carnegie-Mellon University
Pittsburgh PA 15260

Dr Norman J. Slamecka Department of Psychology University of Toronto Toronto Onto MS61A1 Canada

Dr Edward E.: Smith Bolt Beranel Heuman Inc 50 Moulton Street Cambridge MA 02139

Dr Linda B. Smith Department of Psychology Indiana University Bloomington IN 47405 Dr Robert Solso
Psychology Department
University of Nevada, Reno
Reno NV 89557

Dr Robert Sorkin Department of Psychology Purdue University West Lafayette IN 47907

Dr George Sperling Psychology Department New York University 6 Washington Place RM 980 New York NY 10003

Dr Kathryn T. Spoehr Psychology Department Brown University Providence RI 02912

Dr Larry Squire Vet. Adm. Medical Center 3350 La Jolla Village Drive San Diego CA 92161

Dr Keith Stanovich
Department of Psychology
Oakland University
Rochester MI 48063

Dr Robert Sternberg Department of Psychology Box 11A Yale Station New Haven CT 06520

Dr Saul Sternberg
Department of Psychology
University of Pennslyvania
Philadelphia PA 19104

Dr John Swets C/O Bolt Bezwark & Herman 50 Moulton Street Cambridge MA 02138

Dr David A. Swinney Psychology Department Tufts University Medford MA 02155

Dr Michael Tanehaus Psychology Department University of Rochester Rochester NY 14726 Dr Keith Rayner
Department of Psychology
Tobin Hall
University of Massachusetts
Amherst MA 01003

Dr Arthur S. Reber Department of Psychology Brooklyn College Brooklyn NY 11210

Dr Lynne Reder Department of Psychology Carnegie-Mellon University Pittsburgh PA 15260

Dr Stephen Reed Psychology Department Florida Atlantic University Boca Raton FL 33431

Dr Robert Rescorla
Department of Psychology
University of Pennsylvania
3815 Walnut Street
Philadelphia PA 19104

Dr Lance Rips Behavioral Sciences 5848 S. University Avenue Chicago IL 60637

Dr Irvin Rock
Psychology Department-Livingston
Rutger University
New Brunswick NJ 08903

Dr Henry L. Roediger, III Department of Psychology Purdue University West Lafayette IN 47987

Dr Eleanor Wisch
Department of Psychology
University of California
Berkeley CA 94720

Dr David A. Rosenbaum School of Cognitive Sci Comm. Hampshire College Amherst MA 01002

Dr David C. Rubin
Department of Psychology
Duke University
Durham NC 27706

Dr Dewey Rundus
Department of Psychology
University of South Florida
Tampa FL 33620

Dr Timothy A. Salthouse Department of Psychology University of Missouri Columbia MO 65211

Dr James Sawausch Department of Psychology State University of New York 4230 Ridge Lea Road Buffalo NY 14226

Dr Arthur Schulman Department of Psychology University of Virginia Charlottesville VA 22901

Dr Roger Schvaneveldt Department of Psychology New Mexico State University Las Cruces NM 88003

Dr Barry Schwartz Psychology Department Swarthmore College Swarthmore PA 19081

Dr Richard Schweickert
Psychological Sciences
Purdue University
West Lafayette IN 47907

Dr J. G. Seamon
Department of Psychology
Wesleyan University
Middletown CT 06457

Dr Robert Sekuler 2003 Orringian Avenue Evanston IL 60201

Dr James Shanteau Department of Psychology Kansas State University Manhatten KS 66506

Dr Martlyn Shatz Human Performance Center 330 Packard Road Ann Arbor MI 48104 Dr Raja Parasuraman Human Performance Lab Catholic University of America Washington BC 20064

Or James Pellegrino
Grad School of Education
University of California
Santa Barbara CA 93106

Dr Charles A. Perfetti LRDC University of Pittsburgh Pittsburgh PA 15260

Dr Kathy Pezdek
Department of Psychology
Claremont Graduate School
Claremont CA 91711

Dr Herbert L. Pick, Jr Inst of Child Development University of Minnesota Minneapolis MN 55455

Dr Steven Pinker
Department of Psychology
E-10-018
Massachusetts Institute of Technology
Cambridge MA 02139

Dr David b. Pisoni Department of Psychology Indiana University Bloomington IN 47405

Dr R. H. Pollack Department of Psychology University of Georgia Athens GA 30602

Dr Irwin Pallack
Mental Health Rsch Institute
University of Michigan Stop 053
Ann Arbor Mi 48104

Dr Alexander Pollatsek Department of Psychology University of Massachusetts Amherst MA 01003

Dr James R. Pomerantz Department of Psychology 4230 Ridge Lea Road Buffalo NY 14226 Dr Michael I. Posner Department of Psychology University of Oregon Eugene OR 97403

Dr L. J. Postman
Department of Psychology
University of California
Berkeley CA 94720

Dr Mary Potter
Department of Psychology
E10-032
Massachusetts Institute of Technology
Cambridge MA 02139

Dr George R. Potts
Department of Psychology
University of Denver
Denver CO 80208

Dr Robert Proctor
Department of Psychology
Auburn University
Auburn AL 36849

Dr Dennis R. Proffitt Psychology Department Gilmer Hall University of Virginia Charlottesville VA 22901

Dr Dean G. Purcell Department of Psychology Oakland University Rochester MI 48063

Dr David H. Raab Department of Psychology Brooklyn College Brooklyn Mr. 11210

Dr Jan Rabininitz
Department of Psychology
Barnard Colling
606 W. 120th Street
New York NY 10027

Dr Roger Ratcliff Psychology Department Northwestern University Evanston IL 60201 Or James L. McClelland Department of Psychology Carnegie Mellon University Pittsburgh PA 15213

Dr George McConkie Ctr for Study of Reading 51 Gerty Drive Champaign IL 61820

Dr Gail McKoon Psychology Department Northwestern University Evanston IL 60201

Dr Douglas C. Medin Department of Psychology University of Illinois Champaign IL 61820

Dr David E. Meyer 1715 Shadford Rd Ann Arbor MI 48104

Dr Glenn Meyer
Department of Psychology
Lewis and Clark College
Portland OR 97219

Dr George A. Miller Psychology Department Green Hall Princeton University Princeton NJ 08544

Dr Jeffrey Miller
Bepartment of Psychology C-009
University of California
La Jolia CA 92093

Dr Morris Moscovitch
Department of Psychology
Erindale College
Mississauga Ont Canada

Dr Jerome L. Meyers Department of Psychology University of Massachusetts Amherst MA 01003

Dr Jacob Machmias Department of Psychology 3815 Walnut Street Philadelphia PA 19104 Dr David Mavon
Department of Psychology
University of Halfa
Halfa-31999 Israel

Dr James H. Neely Psychology Department Purdue University West Lafayette IN 47907

Dr Urlic Neisser Psychology Department Emory University Atlanta GA 30322

Dr Thomas O. Nelson
Psychology Department (NI-25)
University of Washington
Seattle WA 98195

Dr Raymond S. Nickerson Bolt Beranek and Newman 50 Moulton Street Cambridge MA 02138

Dr Donald Norman
Department of Psychology
University of California
La Jolla CA 92093

Dr Gregg Oden
Department of Psychology
University of Wisconsin
Hadison WI 53706

Dr Judith Reitman Olson Comp. Infor. Systems-Bus. Grad. Sch University of Michigan Ann Arbor MI 48109

Dr Gary Olson
University of Michigan
Perry Build (1865)
330 Packard fined
Ann Arbor (1867) 48184

Dr Andrew Ortony 174 Reading Ctr. 51 Gerty Drive Champaign IL 61820

Dr Kenneth R. Paap Department of Psychology New Mexico State University Las Cruces NM 88003 Dr Sylvan Kornblum Mental Health Research Institute University of Michigan Ann Arbor MI 48109

Dr Stephen M. Kosslyn Psychology & Social Relations Harvard University Cambridge MA 02138

Dr Judith Kroll
Department of Psychology & Education
Mount Holyoke College
South Hadley MA 01075

Dr Lester E. Krueger Human Performance Center 404B W. 17th Avenue Columbus OH 43210

Dr Carol L. Krumhansl Department of Psychology Uris Hall Cornell University Ithaca NY 14853

Dr Michael Kubovy
Psychology Department
Tillett Hall
Rutgers University
New Brunswick NJ 08903

Or David Laberge School of Social Science University of California Irvine CA 92717

Dr Marcy Lansman
Psychology Department Davie Hall 013A
University of North Carolina
Chapel Hill NC 27514

Dr Joseph Lawith
Department of Psychology
Vanderbilt University
Nashville TN 37240

Dr Lester Lefton
Department of Psychology
University of South Carolina
Columbus SC 29208

Dr Alvin Liberman Haskins Laboratories 270 Crown Street New Haven CT 06510 Dr Gregory Lockhead Department of Psychology Duke University Durham NC 27706

Dr Elizabeth Loftus Department of Psychology University of Washington Seattle WA 98195

Dr Gregory Loftus
Department of Psychology
University of Washington
Seattle WA 98195

Dr Gordon D. Logan Department of Psychology University of Illinois Champaign IL 61820

Dr Jack M. Loomis Department of Psychology University of California Santa Barbara CA 93106

Dr Lola Lopes
Department of Psychology
University of Wisconsin
Madison WI 53706

Dr R. Duncan Luce William James Hall Harvard University Cambridge MA 02138

Dr George Mandler
Center Human Information Processing
University of California
La Jolla CA 92093

Dr Jean M. Mandler Department of Ptychelegy University of 12177acmia La Jolla Capa 32095

Dr Ellen M. Markman
Psychology Building 420
Stanford University
Stanford CA 94305

Dr Dominic Massaro Program In Experimental Psychology University of California Santa Cruz CA 95064 Department of Psychology Princeton University Princeton NJ 08544

Dr Neal Johnson
Department of Psychology
Ohio State University
Columbus OH 43210

Dr William A. Johnston Department of Psychology University of Utah Salt Lake City UT 84112

Dr John Jonides Psychology Department University of Michigan Ann Arbor MI 48109

Dr James Juola Department of Psychology University of Kansas Lawrence KS 66045

Or Marcel Just Department of Psychology Carnegie-Mellon University Pittsburgh PA 15213

Or Daniel Kahnman Department of Psychology University of British Columbia Van Couver-B.C. Canada

Dr Barry Kantowitz Department of Psychology Purdue University West Lafayette IN 47907

Dr Stuart Kate
Psychology-Minertment
University & Georgia
Athens GA- 30602

Dr Steven W. Keele Psychology Department University of Oregon Eugene OR 97403

Dr Frank C. Kell Psychology 276 Urls Hall Cornell University Ithaca NY 14853 Br J.A. Scott Kelso Haskins Laboratories 270 Crown Street New Haven CT 06510

Dr Geoffrey Keppel
 Department of Psychology
 University of California
 Berkeley CA 94720

Dr Stephen M. Kerst 35 Bayside Road #1RD Boston MA 02215

Dr David Kieras Department of Psychology University of Arizona Tucson AZ 85721

Dr John F. Kihlstrom Department of Psychology University of Wisconsin Madison WI 53706

Or Gregory A. Kimble Department of Psychology Duke University Durham NC 27706

Dr Ron Kinchla
Department of Psychology
Princeton University
Princeton NJ 08540

Dr P. K. Kirsner Psychology Department University of Western Australia-Perth Nedland 6009 Australia

Or David Klahr
Department of Psychology
Carnogie Mellon University
Pittsburgh T5213

Dr Stuart T: **EJapp**Department of Psychology
California State University
Hayward CA 94542

Dr Roberta L. Klatzky Psychology Department University of California, Santa Barbara Santa Barbara CA 93106 Dr Robert G. Grice
Department of Psychology
University of New Mexico
Albuquerque NM 97131

Dr Steven Grossberg 50 Hyde Street Newton Highland MA 02161

Dr Ralph Haber
Psychology Department
University of Illinois at Chicago
Chicago IL 60680

Dr Lynn Hasher Department of Psychology, Weiss 8 Temple University Philadelphia PA 19122

Dr Reid Hastie
 Department of Psychology
 Northwestern University
 Evanston IL 60201

Dr Alice F. Healy Psychology Department Campus Box 345 University of Colorado Boulder CO 80309

Dr Richard Held Department of Psychology 79 Amherst Street Cambridge MA 02139

Dr Joseph B. Hellige
Psychology Department-SGM 704
University of Southern California
Los Angeles CA 90089

- Or J. V. Hincichs
 Department of Psychology
 University Tigms
 Lowa City 15: 52242
- Dr Douglas Hintzman
 Department of Psychology
 University of Oregon
 Eugene OR 97403

Dr Ira J. Hirsh
Department of Psychology Box 1125
Washington University
St. Louis MO 63130

Dr Julian Hochberg
Department of Psyhoology
Columbia University
New York NY 10027

Dr Howard Hock
Department of Psychology
Florida Atlantic University
Boca Raton FL 33431

Dr James Hoffman Department of Psychology University of Delaware Newark DE 19711

Or Keith Holyoak Psychology Department University of Michigan 330 Packard Road Ann Arbor MI 48104

Dr Donald Homa Department of Psychology Arizona State University Tempe AZ 65287

Dr Darlene V. Howard Department of Psychology Georgetown University Washington DC 20057

Dr James H. Howard, Jr. Department of Psychology The Catholic University Washington DC 20064

- Dr Earl Hunt Department of Psychology University of Washington NI-25 Seattle WA 98195
- Dr Janellen Muttenlocher Department of Education 5600 S. Kimberk Avenue Chicago IL 60637

Dr M.J. Peterson-Intons Department of Psychology Indiana University Bloomington IN 47405

Dr Larry L. Jacoby Department of Psychology University of Utah Salt Lake City UT 84112

The built of water and water or at a transfer that the still a way to be a second and a commence of the second

Or Michael S Gazzaniga Neurology Cornell University 1300 York Avenue New York NY 10021

Dr R. E. Geiselman Department of Psychology University of California Los Angeles CA 90024

Dr E. Scott Geller Department of Psychology Virginia Tech Blacksburg VA 24061

Dr Rochel Gelman Department of Psychology 3813-15 Walnut Street Philadelphia PA 19104

Dr Dedre Gentner University of Illinois Champaign IL 61820

Or Eleanor J. Gibson Department of Psychology Uris Hall Cornell University Ithaca NY 14853

Dr Murray Glanzer
 Department of Psychology
 New York University
 New York NY 10003

Dr Arnold L. Glass
Psychology Department-Busch Campus
Rutgers University
New brunswick NJ 08903

Dr Henry Glaitman
Psychology Edia trant
3815 Halnut Street
University of Permsylvania
Phildelphia PA 19104

- Dr Arthur Glenberg
Department of Psychology
University of Wisconsin
Madison WI 53706

Dr Sam Glucksburg Department of Psychology Princeton University Princeton NJ 08544 Dr Walter C Goge? Department of Psychology University of California Santa Barbara CA 93106

Dr Judith Goggin Department of Psychology University of Texas-El Paso El Paso TX 79968

Or Bruce Goldstein Department of Psychology University of Pittsburgh Pittsburgh PA 15260

Dr Paula Goolkasian Department of Psychology University of North Carolina Charlotte NC 28223

Dr Daniel Gopher Department of Indus. Engin. & Mngmant, Techn Haifa 3200 Israel

Dr Arthur Graesser Department of Psychology California State University Fullerton CA 92634

Dr Norma Graham 314 Schermerhorn Hall, Psychology Columbia University New York NY 10027

Dr Douglas S. Grant Department of Psychology The University of Alberta Edmonton Alta Canada

Dr David No Brees Department of Peychalogy Harvard University Cambridge 1888 82738

Dr James Greeno University of California at Berkley Berkley CA 94720

Dr Anthony Greenwald Ohio State University 404C W 17th Avenue Columbus OH 43210 Department of Psychology University of Alberta Edmonton Alta CANADA

Dr Emanuel Donchin Department of Psychology University of Illinois Champaign IL 61820

Dr Ward Edwards Social Science Research Inst. University of Southern Calif Los Angeles CA 90089

Or Howard Egeth
Department of Psychology
Johns Hopkins University
Baltimore MD 21218

Dr Peter D. Eimas Department of Psychology Brown University Providence RI 02912

- Dr Henry C. Ellis
 Department of Psychology
 University of New Mexico
 Albuquerque NM 87131
- Or Randall Engle
 Department of Psychology
 University of South Carolina
 Columbia SC 29208

Or William Epstein Psychology Building Charter @ W Johnson Madison WI 53706

Dr James R. Erickson
Department of Psychology
University of Texas
Arlington TX: 76019

Dr C. W. Eriksen 519 Psychology Building University of Illinois 603 East Daniel Champaign IL 61820

- Dr W. K. Estes
WM James Hall
Harvard University
Cambridge MA 02138

Dr Ronald Alan Finke Department of Psychology S.U.N.Y. at Stony Brook Stony Brook NY 11794

Or Baruch Fischhoff Decision Research 1201 Oak Eugene OR 97401

Or Ira Fischler Department of Psychology University of Florida Gainsville FL 32611

Or John Flowers
Psychology-209 Burnett
University of Nebraska-Lincoln
Lincoln NE 68588

Or John M Foley Department of Psychology University of California Santa Barbara CA 93106

Dr Donald J. Foss Department of Psychology University of Texas Austin TX 78712

Dr Robert Fox
Psychology-Wesley Hall 134
Vanderbilt University
Nashville TN 37240

Or Jeffrey J. Franks Psychology Wesley Hall Vanderbilt University Nashville TN 37240

Dr John R Frederiksen Bolt Beranek: 6 Herman 10 Moulton Street Cambridge MF- 02238

Or Jennifer Freyd
Department of Psychology
Uris Hall
Cornell University
Ithaca NY 14853

Or Wendell R Garner Department of Psychology Yale Station 13A New Haven CT 06520 Dr Bruno Breitmeyer Department of Psychology University of Houston Houston TX 77004

Dr James Brennan Department of Psychology University of Mass-Harbor Campus Boston MA 02125

Dr William F. Brewer Department of Psychology University of Illinois 603 East Daniel St Champaign IL 61820

> Dr Bruce Bridgeman Vision Research Lab University of California Santa Cruz CA 95064

Dr Lee R. Brooks
Department of Psychology
Mc Master University
Hamilton - Ontario
CANADA

전 Dr Nelson Butters 출 3147 Morning Way - La Jolla CA 92037

Dr Alfonso Caramazza
Department of Psychology
Johns Hopkins University
Baltimore MD 21228

Dr Patricia A. Carpenter Department of Psychology Carnegie-Mellon University Pittsburgh PA 15213

Dr Thomas H_Carr
Department df/Rsychology
Psychology Misearch Building
Michigan State University
East Lansing MI 48824

Dr E. C. Carterette
Department of Psychology
University of California
Los Angeles CA 90024

Dr Michelene Chi Learning Research & Development Cnt University of Pittsburgh Pittsburgh PA 15206

Dr Herbert H. Clark Department of Psychology Building 420 Stanford University Stanford CA 94305

Dr Charles Clifton Department of Psychology University of Massachusetts Amherst MA 01003

> Dr Ronald A. Cole 1445 Wightman St Pittsburgh PA 15217

Dr Lynn A. Cooper 517 LRDC Building 3939 O'Hara Street Pittsburgh PA 15206

 Dr Robert G. Crowder Department of Psychology Box 11A Yale Station New Haven CT 06520

> Dr James E. Cutting Department of Psychology, Uris Hall Cornell University Ithaca NY 14853

Dr Joseph H. Danks Department of Psychology Kent State University Kent OH 44242

Dr James Doese
Department of Psychology
University of Birginia
Charlottesville Way 22901

Dr William W. Dember
Department of Psychology
University of Cincinnati
Cincinnati OH 45221

Dr Donald V. Derosa
Department of Psychology
Bowling Green State University
Bowling Green OH 43403